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Abstract
1. Food web stability and resilience are at the heart of understanding the structure 

and functioning of ecosystems. Previous studies show that models of empirical 
food webs are substantially more stable than random ones, due to a few strong 
interactions embedded in a majority of weak interactions. Analyses of trophic 
interaction loops show that in empirical food webs the patterns of the interac-
tion strengths prevent the occurrence of destabilizing heavy loops and thereby 
enhances resilience. Yet, it is still unexplored which biological mechanisms cause 
these patterns that enhance food web resilience.

2. We quantified food web resilience using the real part of the maximum eigenvalue of 
the Jacobian matrix of the food web from a seagrass bed in the Yellow River Delta 
(YRD) wetland, that could be parametrized by the empirical data of the food web.

3. We found that the empirically based Jacobian matrix of the YRD food web in-
dicated a much higher resilience than random matrices with the same element 
values but arranged in random ways. Investigating the trophic interaction loops 
revealed that the high resilience was due to a negative correlation between the 
negative and positive interaction strengths (per capita top- down and bottom- up 
effects, respectively) within positive feedback loops with three species. The nega-
tive correlation showed that when the negative interaction strengths were strong 
the positive was weak, and vice versa.

4. Our invented reformulation of loop weight in terms of biomasses and specific 
production rates showed that energetic properties of the trophic groups in the 
loop and mass- balance constraints, for example, the food uptake has to balance 
all losses, created the negative correlation between the interaction strengths. This 
result could be generalized using a dynamic intraguild predation model, which de-
livered the same pattern for a wide range of model parameters.

5. Our results shed light on how energetic constraints at the trophic group and food 
web level create a pattern of interaction strengths within trophic interaction loops 
that enhances food web resilience.
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1  | INTRODUC TION

One of the most pressing challenges in ecological research is the on-
going deterioration of ecosystems world- wide with dramatic losses of 
biodiversity and the concomitant threats to ecosystem resilience and 
services (e.g. IPBES, 2019; Mori et al., 2013). A central concept in un-
derstanding biodiversity dynamics is community stability, that is, the 
capacity of the community to withstand or recover from environmen-
tal change. Food webs depict the trophic interactions, that is, who eats 
whom, in biological communities. Trophic interactions are of funda-
mental importance to the dynamics and persistence of species in eco-
systems. Therefore, food webs occupy a central position in community 
ecology and their stability and resilience are at the heart of understand-
ing the structure and functioning of ecosystems (Moore et al., 2017).

Food web stability has been approached by experimentation 
(e.g. Paine, 1992) and mathematical modelling (e.g. May, 1972; Pimm 
& Lawton, 1977). One of the most well- known approaches to mea-
sure food web stability is modelling the food web structure in the 
form of a Jacobian matrix (sensu May, 1972). In a Jacobian the matrix 
elements denote the strengths of the trophic interactions among the 
trophic groups. This approach considers food web stability and resil-
ience in terms of how the food web responds to a disturbance. This 
can include various kinds of disturbance- response situations. When 
the disturbance has a short- term transient character, it is seen as a 
momentary change in the state of the food web, in terms of popula-
tion biomasses. Then food web stability denotes the capacity of the 
food web to return to its original equilibrium state, while food web 
resilience denotes the rate at which the food web returns to the orig-
inal equilibrium. This type of food web resilience can be categorized 
as an example of the ‘first face’ of resilience (sensu Holling, 1996), 
that is, ‘engineering resilience’. When, in contrast, the disturbance 
has a long- term persistent character, it is seen as a structural change 
in environmental conditions. Then food web stability and resilience 
capture the capacity of the food web to adapt to the new environ-
mental conditions by moving towards a new equilibrium state as well 
as the pathways towards the new equilibrium. This type of resilience 
can be categorized as an example of Holling's second face of resil-
ience, that is, ‘ecological resilience’.

In the present paper, we adopted the Jacobian matrix approach to 
analyse engineering resilience of an empirical food web. In such an ap-
plication, the value of the maximum eigenvalue serves as a measure of 
food web resilience as it represents the ‘return time’ of the community 
needed to return to the original equilibrium after a sufficiently small 
disturbance (Moore et al., 2004; Pimm, 1982; Pimm & Lawton, 1977). 
Short return times are interpreted as high engineering resilience 
(Angeler & Allen, 2016; Pimm, 1991). Overall, the larger the value of 
the maximum eigenvalue the less resilient the food web (Wootton & 
Stouffer, 2016; see further section Materials and Methods).

Originally, Jacobian matrices were randomly constructed, both 
in terms of sign structure and of the values of the matrix elements. 
In such random approaches, the random food webs lost the intrin-
sic relationships that reflect the energetic build- up of empirical food 
webs in terms of the distributions of biomasses and energy fluxes. 

However, the Jacobian matrix approach is also suitable to combine 
empirical information with mathematical analysis, as the values of the 
elements in the Jacobian matrix can be derived from measurements 
(e.g. Jacquet et al., 2016; de Ruiter et al., 1995). The food webs rep-
resented by such empirically constructed matrices were found to be 
substantially more resilient than randomly constructed food webs 
(Jacquet et al., 2016; Neutel et al., 2002; de Ruiter et al., 1995; Tang 
et al., 2014; Yodzis, 1981). The mechanism behind this high level of 
resilience was that within the more realistic and ecologically feasible 
values of interaction strengths (ISs), a majority of weak ISs dampen a 
few strong ISs, thus enhancing food web resilience (Brose et al., 2006; 
Emmerson & Raffaelli, 2004; Emmerson & Yearsley, 2004; Gellner & 
McCann, 2016; McCann et al., 1998; Paine, 1992; Rip et al., 2010).

A key finding for understanding the stabilizing effects of IS patterns 
comes from Neutel et al. (2002) by revealing the importance of ‘trophic 
interaction loops’ sensu Levins (1974). A trophic interaction loop con-
nects the interactions among several trophic groups in a closed circuit, 
where a group is connected with any other groups only once along 
the same path. For instance, three groups of intraguild predation (IGP, 
Holt & Polis, 1997), comprising a prey, a consumer of the prey and an 
omnivorous predator consuming both, result in two omnivorous loops 
(Figure 1). The length of a loop is determined by the number of trophic 
groups involved and its weight is the geometric mean of the component 
ISs. The higher the maximum loop weight the less stable the Jacobian 
matrix (Neutel et al., 2002, 2007). It has indeed been found that the 
maximum loop weight in the empirically based matrices is much lower 
than that in the randomized matrices (Neutel et al., 2002).

The concept of maximum loop weight provides a link between 
observed stabilizing patterns of ISs and mathematical theory of food 
web resilience. Yet, further clarification is needed to understand the 
biological mechanisms preventing that in empirical food webs such 
heavy loops occur as in the corresponding random webs. Because 
the values of ISs are derived from the energetic structure of the food 
web, the question becomes how the energetic build- up in food webs 
prevents heavy loops.

In the present paper, we approach this question by analysing resil-
ience of the seagrass food web in the Yellow River Delta (YRD) wetland 
(Figure 1). The description of the YRD food web entails the biomasses 
of 14 trophic groups (and a detritus pool) and the fluxes among them 
(Li, Yang, Sun, et al., 2021). We constructed a Jacobian matrix of the 
food web and investigated the maximum loop weight to identify bio-
logical mechanisms that underly food web resilience. We hypothesize 
that the interaction strengths in the empirically based YRD food web 
model are arranged in such a way that heavy loops are prevented. 
Furthermore, that this arrangement is controlled by food web energet-
ics in terms of the distribution of biomasses and fluxes. To test these 
hypotheses, we compared the resilience of the YRD food web with 
that of randomized matrices through multiple random permutations of 
ISs (Yodzis, 1981). We also compared the maximum loop weight of the 
YRD matrix with that of the randomized matrices. This revealed that 
the YRD food web had no heavy loops due to a negative correlation 
between negative and positive ISs within loops. We then invented a re-
formulation of loop weight to see how this negative correlation results 
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from the energetic constraints imposed on the structure of empirical 
food web. These energetic constraints accounted for energetic prop-
erties of trophic groups (e.g. biomasses and specific production rates) 
and mass- balanced constraints at the trophic group and food web level. 
Mass- balanced constraints at the trophic group level imply that the 
food uptake of a trophic group has to balance losses by its excretion, 
respiration and mortality. At the food web level, such constraints imply 
that consumer production can only be a fraction of its total prey pro-
duction, that when an omnivorous predator receives a large proportion 
of its diet from one species then it will consume other species less, and 
that the production of a prey shared by different consumers can only 
be consumed once. Finally, we constructed a dynamic IGP model to 
investigate the generality of our results, in particular the negative cor-
relations between negative and positive interaction strengths in loops 
and the role of energetic constraints.

2  | MATERIAL S AND METHODS

2.1 | Structure of the Yellow River Delta food web

The YRD food web (Figure 1) comes from a seagrass bed, located on 
the coast of the Bohai Sea of northeast China, being ca. 20 km away 
from the river mouth. Based on field and laboratory observations, 
we distinguished 14 trophic groups and detritus represented by 

suspended particulate matter (Figure 1); herewith, a trophic group 
means a grouping of organisms sharing the same prey and predators. 
Food web fluxes were derived from measurements of biomasses, 
stable carbon and nitrogen isotope ratios, a Bayesian isotope mix-
ing model, and assuming that the quantitative food web model is at 
steady state (Li, Yang, Sun, et al., 2021).

The food web had 34 trophic links among the 14 trophic groups, 
with a linkage density and connectance of 2.43 and 0.17, respec-
tively, which is similar to many other aquatic food webs (Dunne 
et al., 2002). Regarding the primary producers, the production of 
seagrass and cordgrass Spartina alterniflora was rather low relative 
to their high biomasses and vice versa for phytoplankton and micro-
phytobenthos (Table S1). Bivalves and gastropods dominated the 
consumer biomass, but zooplankton, the fish species So- iuy mullet 
Planiliza haematocheila, shrimps and polychaetes contributed also 
substantially to food web energetics due to their relatively high spe-
cific production rates (i.e. production to biomass ratios, P/B). The 
magnitude of fluxes generally decreased from low to high trophic 
positions, covering a range of three orders of magnitudes (Table S2).

2.2 | Assessing the resilience of the YRD food web

To derive the Jacobian matrix, the YRD food web was modelled in 
terms of generalized Lotka– Volterra differential equations sensu de 

F I G U R E  1   (a) Feeding diagram of the food web from a seagrass bed in the Yellow River Delta wetland. (b) Three trophic groups with 
intraguild predation (IGP), where the top group shrimps (t) feeds on the intermediate group zooplankton (i) and competes with zooplankton 
feeding also on the bottom group phytoplankton (b). Black arrows denote the fluxes Fbi, Fbt and Fit, meaning the flux from phytoplankton to 
zooplankton, from phytoplankton to shrimps and from zooplankton to shrimps respectively. (c) Two trophic interaction loops derived from the 
IGP module (i.e. omnivorous loops). Negative and positive interaction strengths are represented by red and green arrows respectively. The 
positive feedback omnivorous loop consists of two negative interaction strengths (αit and αbi) and one positive interaction strength (αtb), and 
the negative feedback omnivorous loop consists of two positive interaction strengths (αib and αti) and one negative interaction strength (αbt)
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Ruiter et al. (1995), in which the dynamics of producer biomass can 
be described as follows:

where Xi and Xj are the biomass of trophic group i and trophic group 
j respectively. r is the intrinsic growth rate and aij is the attack rate of 
j on i.

The dynamics of consumer biomass can be described as:

where ei is the conversion efficiency of trophic group i, and di is the 
specific death rate of i.

The Jacobian matrix was derived in the equilibrium state as the par-
tial derivatives of the Lotka– Volterra differential equations (May, 1972). 
The values of the matrix elements were derived from the observed 
biomasses, the estimated fluxes and energy conversion efficiencies (Li, 
Yang, Sun, et al., 2021) following de Ruiter et al. (1995). The flux Fij (flux 
from trophic group i to trophic group j, g DW m−2 year−1, where DW is 
dry weight) in the equilibrium state can be expressed as Fij = aijX

∗
i
X ∗
j
. 

This implies that the negative interaction strength (IS) of predator j on 
prey i (αij) representing the per capita top- down effect becomes: 

where Bj is the biomass (g DW m−2) of predator j based on field survey 
data, and we set Bj = X ∗

j
 in the equilibrium state (de Ruiter et al., 1995).

Similarly, the positive IS of prey i on predator j (αji, here we re-
strict the Jacobian matrix to biological interactions and leave out 
interactions to and from the detritus pool; Neutel & Thorne, 2014) 
representing the per capita bottom- up effect becomes:

In this way we could parametrize all off- diagonal values to ob-
tain the empirical matrix. For the diagonal values, denoting intra-
specific interference, we lacked empirical information. There are 
several ways to ‘deal’ with the diagonal values (see e.g. van Altena 
et al., 2016). We choose to set all diagonal values equal to zero 
(Neutel & Thorne, 2014; Rip & McCann, 2011; Tang et al., 2014). 
This implies that the matrix will have some eigenvalues with positive 
real parts, and then we cannot speak of stability of the matrix in the 
strict, mathematical sense, but the real part of the maximum eigen-
value (Re(λmax)) can then indicate the level of resilience. The lower 
the value of the Re(λmax), the more resilient the food web (Neutel & 
Thorne, 2014; Wootton & Stouffer, 2016).

2.3 | Randomizations in the empirical matrix of the 
YRD food web

To get insights in underlying mechanisms of the YRD food web resil-
ience, we applied four randomizations on the empirical matrix (see 
Figure S1 the schematic representation of the four randomizations). 
All four randomizations conserve the empirical YRD food web topo-
logical structure (i.e. who eats whom), sign structure (+, −) and the 
values of ISs, but randomize the placing of ISs in the empirical ma-
trix (Yodzis, 1981). This implies that we kept the trophic interactions 
among trophic groups in place but changed the absolute values of 
the strengths of these interactions. Comparing the Re(λmax) for a ran-
dom matrix with that of the empirical matrix reveals which patterns 
of IS are critical to food web resilience.

The first two randomizations, 1 and 2, were meant to test 
whether the empirical matrix included a pattern of ISs that enhances 
food web resilience. For randomization 1, we got a completely ran-
dom matrix via randomly swapping predator– prey pairing of ISs 
(i.e. αij and αji for each trophic link, see Equations 3 and 4) 1,000 
times for each random matrix, except that we still conserved the 
linkage between the negative and positive ISs for each pair (sensu 
Yodzis, 1981). Then we repeated this 1,000 times to achieve 1,000 
random matrices. For randomization 2, we got an even more ran-
domized matrix in which also the pairing of ISs was lost via randomly 
swapping all positive elements and negative elements 1,000 times 
for each random matrix (Tang et al., 2014). This allows us to further 
determine the role of pairing of ISs. We repeated this also 1,000 
times to achieve 1,000 random matrices.

The two other types of randomization, randomization 3 and 4, 
were meant to see whether there are any single (pairs of) ISs that 
are critical (‘keynote interactions’) to food web resilience. In these 
randomizations, the permutations were restricted to swapping only 
two pairs of ISs (randomization 3) or two single ISs with the same 
sign (i.e. either two positive values or two negative values, random-
ization 4). In both randomization we systematically covered all ex-
change possibilities. Since we have 34 trophic links resulting in 34 
pairs of ISs in the empirical matrix, we had for randomization 3 and 
4 561 (34*33/2 = 561) and 1,122 (34*33 = 1,122) random matrices, 
respectively.

One- sample t tests were used to compare the average values of 
Re(λmax) and maximum loop weight (cf. Section 2.4 in Materials and 
Methods) of the randomized matrices with those of the empirical 
matrix. For these t tests we used version 20.0 of Statistical Package 
for the Social Sciences (SPSS) software (www.ibm.com/analy tics/us/
en/techn ology/ spss/).

2.4 | Analysis of trophic interaction loops

A trophic interaction loop is a closed chain of interactions starting 
from a certain trophic group and going back to the same group with 
visiting other groups only once. For example, an IGP module consist-
ing of three trophic groups generates two feedback loops (Figure 1): 
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one positive (a clockwise loop comprising two negative ISs and one 
positive IS) and one negative feedback loop (an anti- clockwise loop 
comprising one negative IS and two positive ISs). Here, positive or 
negative feedback means that the product of all component ISs in 
the loop is positive or negative.

Loop weight is defined as the geometric mean of the absolute 
values of the ISs in a loop:

where LW(k) is the loop weight (year−1) of a loop of length k (containing 
k trophic group). In this study, we examined all loops up to a length of 
8 (Neutel et al., 2002) for the YRD food web and for each random food 
web.

The maximum loop weight has been proposed as an indicator 
for the stability of the Jacobian matrix (Neutel et al., 2002). In the 
present analysis maximum loop weight should correlate with the 
maximum eigenvalue of the Jacobian matrix indicating food web 
resilience. Hence, the lower the maximum loop weight the more 
resilient the food web. Given that the heaviest omnivorous loops 
strongly govern food web resilience (Neutel et al., 2007, Figure 1 
and Figure S2), and positive feedback loops lead to unstable sys-
tem behaviour (Li & Moyle, 1981), we focused on positive feedback 
omnivorous loops (LWPFOL). To understand what biological proper-
ties of the trophic groups within the loop determine loop weight, 
we invented a reformulation of the LWPFOL in terms of a function of 
P/B ratios and the biomass ratio between the top and the bottom 
trophic group Bt/Bb (see below). P/B ratios determine the weight- 
specific turnover rates of energy of the component trophic groups 
and reflect their metabolic activity, depending, for example, on 
their growth and death rates. They are ultimately related to ISs, 
that is, high P/B ratios promote strong ISs and vice versa (Rooney 
et al., 2006). For example, a predator with a high P/B ratio will con-
sume a high amount of prey relative to its own biomass and thus 
exert a strong grazing pressure on its prey, that is, a pronounced 
negative IS. The absolute values of ISs involved in a PFOL can be 
biologically expressed as:

where fkj reflects the diet composition of consumer j (dimensionless) 
and represents the proportion of a given prey k contributing to the diet 
of the consumer j, therefore, Fkj = fkjFj, where Fj is the total ingestion 
of consumer j. Pj is the production, being the product of Fj and its con-
version efficiency ej, Pj = ejFj. Equations (6) and (7) reveal that αbi and 
αit are proportional to the values of Pi/Bi and Pt/Bt respectively. αtb is 
proportional to the product of Pt/Bt and Bt/Bb (Equation 8).

Thus, the loop weight of PFOLs can be expressed as:

where the diet compositions are subject to energetic mass- balance 
constraints and satisfy 0 < fbi ≤ 1 and 0 < fit + fbt ≤ 1. That is, for exam-
ple, the omnivore can only comprise either a high share of the bottom 
trophic group or the intermediate consumer.

2.5 | Intraguild predation modelling

To theoretically investigate the generality of the effects of the 
pattern of ISs and the energetic properties of the trophic groups 
in the PFOLs on food web resilience, we constructed a dynamic 
model of a food web of three trophic groups with IGP (Holt & 
Polis, 1997; Figure 1). The biomass dynamics of the three trophic 
groups (Xb, Xi and Xt) are given by the following ordinary differen-
tial equations:

where the growth of bottom trophic group b is modelled by a logistic 
function with the maximum growth rate r and the carrying capacity 
K. abi, abt and ait represent the attack rates of the intermediate trophic 
group i on b, of the top trophic group t on b and of t on i respectively. 
e is the conversion efficiency of i and t. di and dt represent the death 
rates of i and t respectively.

To achieve different IGP food web structures with varying ISs 
resulting in different PFOLs, we ran the IGP model for a wide range 
of parameter values via randomly selecting the values for the param-
eters abi, abt, ait, di, dt separately from (0, 1) and K from (1, 10), while 
keeping r and e constant (1 and 0.3 respectively). Hence, we did not 
assume a priori that the inherent energetic constraints within each 
IGP model were fulfilled, but restricted the further analysis to the 
models with ecologically feasible combinations of parameters that 
ensured coexistence of the three trophic groups (see Appendix S1 
for the coexistence conditions). In this way we generated 2,000 
IGP models where the three groups coexisted, and calculated the 
equilibrium biomasses as the mean biomasses of the last 5,000 
steps of a 10,000. This time interval ensured that all simulations 
reached stasis or regular oscillations to overcome any transients. By 
these means we obtained the full range of ecologically feasible IGP 
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models (within the interval set for the different model parameters), 
with a large variation in the biomass and flux distributions among 
the different IGP models. Then we derived the Jacobian matrix for 
each IGP model. To be consistent with the resilience quantification 
of the YRD food web, we also set the diagonal values at zero and 
calculated the Re(λmax) as the measure of food web resilience. We 
also calculated the loop weight of the PFOL for each IGP model 
(based on Equation 5) and applied the reformulation (Equation 9) 
on the PFOL, calculating the Pi/Bi and Pt/Bt as Pi∕Bi = aitX

∗
t
+ di and 

Pt/Bt = dt respectively.
All simulations and calculations were performed using version 

2019b of the MATLAB software.

3  | RESULTS

3.1 | Structure of the Yellow River Delta food web

First we characterized the properties of each trophic link in the YRD 
food web (Figure 1) in terms of the biomass ratio of predator to prey 
(Bj/Bi), interaction strength (IS) of predator on prey (the per capita 
top- down effect, αij), IS of prey on predator (the per capita bottom-
 up effect, αji) and the absolute value of the flux (Figure 2). We found 
that most Bj/Bi ratios were less than 1 (82%) but some trophic links 
had a much higher predator than prey biomass, that is, bivalves feed-
ing on phytoplankton (Bj/Bi = 45), gastropods feeding on microphy-
tobenthos (61) and crabs feeding on microphytobenthos (22). Fluxes 

decreased significantly with trophic positions (Spearman correla-
tion = −0.9, p < 0.001).

The ISs of the YRD food web followed a log- normal distribution 
(Figure S2) with many weak (62% of 68 ISs, <2 year−1) and only a few 
strong ISs (3% of 68 ISs, >20 year−1) (Table S3). The average of the 
absolute values of the negative ISs (αij in Figure 2, 9 ± 16 year−1) was 
higher than that of the positive ISs (αji in Figure 2, 2 ± 6 year−1). The 
opposite was only found in three cases, that is, in the trophic links 
between phytoplankton and bivalves, microphytobenthos and gas-
tropods, and microphytobenthos and crabs.

3.2 | YRD food web resilience as indicated by the 
maximum eigenvalue (Re(λmax) of the Jacobian matrix

Resilience of the YRD food web was quantified by taking the real 
part of the maximum eigenvalue (Re(λmax)) of the Jacobian matrix 
(see Section 2). This value of Re(λmax) was 0.2 year−1. As the matrix 
has only zero values on the diagonal, it can be interpreted as the 
required strength of intraspecific interference (i.e. the diagonal val-
ues) to stabilize the matrix (Neutel et al., 2002). Following this in-
terpretation, the value of 0.2 year−1 can be judged as being low, as 
it is ca. 25 times lower than the average of the absolute values of 
nonzero off- ISs, positive and negative ISs, of the matrix which was 
5 year−1. Hence, the patterning of nonzero off- diagonal values in the 
Jacobian matrix led to a low value of Re(λmax) indicating a high level 
of resilience.

F I G U R E  2   Biomass ratio (Bj/Bi), interaction strengths (αij and αji) and the flux (Fij) for each trophic link in the food web of Yellow River 
Delta wetland. The vertical positions of prey i and predators j reflect their trophic positions
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To further analyse this effect of the pattern of ISs on the resil-
ience of the YRD food web, we applied four kinds of randomization 
to the empirical Jacobian matrix (see Section 2 and Figure S1). For 
randomization 1 and 2, we randomly permuted the pairs of nonzero 
off- diagonal ISs (randomization 1) and the ISs with the same signs 
(randomization 2) respectively (Figure S1). For both randomizations, 
the average values of Re(λmax) were significantly higher than that of 
the empirical matrix, that is, 6 (±5) year−1 for randomization 1 (one- 
sample t(999) = 39, p < 0.001) and 8 (±6) year−1 for randomization 2 
(one- sample t(999) = 43, p < 0.001). These values are respectively 
29 and 37 times higher than that of the empirical matrix, which was 
0.2 year−1 (Figure 3). The maximum values of Re(λmax) were 125 and 
151 times higher than that of the empirical matrix (Re(λmax) = 26 and 
32 year−1 respectively). Only one random matrix based on random-
ization 1 (Re(λmax) = 0.08 year−1) had a lower Re(λmax) than that of 
the empirical matrix. For randomization 2, the minimum Re(λmax) of 
the random matrices was still slightly higher than that of the em-
pirical matrix. This all emphasizes that the placing of the ISs in the 
empirical matrix captures a pattern that is important to food web 
resilience.

To explore in more detail which IS permutations affected Re(λmax) 
most, we did two other simpler randomizations which swapped 
only two pairs of ISs each time (randomization 3) or swapped only 
two ISs with same signs (both values positive or both values nega-
tive) each time (randomization 4) (Figure S1). Again we found that 
the randomized matrices had on average significantly higher values 
of Re(λmax) indicating lower levels of resilience. For randomization 

3 Re(λmax) it was 1 ± 2 year−1 (one- sample t(560) = 11, p < 0.001) and 
for randomization 4 it was 0.8 ± 2 year−1 (one- sample t(1,121) = 12, 
p < 0.001) (Figure 3). Although the swapping concerned only two 
pairs or two ISs, 82% of 561 random matrices based on random-
ization 3 and 73% of 1,122 random matrices had higher values of 
Re(λmax) than the empirical matrix. Furthermore, the highest values 
of Re(λmax) based on randomization 3 and 4 were 91 and 87 times 
higher than that of the empirical matrix (Re(λmax) = 19 and 18 year−1 
respectively). These highest values were found when we swapped 
the pair of ISs between phytoplankton and shrimps with the pair of 
ISs between phytoplankton and bivalves for randomization 3, and 
swapped the positive IS of phytoplankton on shrimps with the pos-
itive IS of phytoplankton on bivalves for randomization 4. The mini-
mum values of Re(λmax) of random matrices based on randomization 
3 and 4 were 0.06 and 0.09 year−1, respectively, that is, lower than 
that of the empirical matrix.

3.3 | YRD food web resilience as indicated by the 
maximum weight of the trophic interaction loops

To get more insight in how and why the pattern of ISs was impor-
tant to the resilience of the YRD food web, we analysed the structure 
of the YRD food web in terms of trophic interaction loops (Neutel 
et al., 2002, and see Section 2). The maximum loop weight is pro-
posed as an indicator of the resilience of the food web. We identified 
4,748 loops with a length from 3 to 8. A particular loop of length 3, 
that is, an omnivorous loop (Figure 1), consisting of phytoplankton, 
zooplankton and shrimps, was the heaviest (5 year−1, Figure S2a). 
Among omnivorous loops, the mean and maximum values of the posi-
tive feedback omnivorous loops (PFOLs) were higher than those of 
the corresponding negative feedback omnivorous loops (Figure S2b).

F I G U R E  3   Food web resilience as quantified by the real part of 
the maximum eigenvalue, Re(λmax), of randomized matrices based 
on randomization 1 (R1, randomly swapping pairs of ISs 1,000 
times for each random food web), randomization 2 (R2, randomly 
swapping positive elements or negative elements 1,000 times for 
each random food webs), randomization 3 (R3, swapping only two 
pairs of ISs for each random food web) and randomization 4 (R4, 
only swapping two ISs with same signs for each random food web). 
The dashed blue line (value: 0.2 year−1) marks the resilience of 
the food web of Yellow River Delta wetland

F I G U R E  4   Maximum loop weight of random food webs based 
on the four randomizations (R1– R4, details see Figure 3). The 
dashed blue line (value: 5 year−1) marks the maximum loop weight 
of the food web of Yellow River Delta wetland
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We repeated this loop analysis for the randomized Jacobian 
matrices. The average of the maximum loop weight of the random 
matrices based on randomization 1 and 2 was ca. 12 (±5.0) year−1 
(Figure 4), that is approximately two times and significantly higher 
than that of the empirical matrix (both for randomization 1 and 
2: one- sample t(999) = 39, p < 0.001). Approximately 96% of the 
1,000 matrices for randomization 1 and 2 had a higher maximum 
loop weight than the empirical matrix. The maximum and minimum 
values of the maximum loop weight in the random matrices based 
on randomization 1 and 2 were ca. 7 times higher and ca. 0.6 times 
lower than that of the empirical matrix respectively.

The average of the maximum loop weight values of matrices 
based on randomization 3 and 4 was also significantly higher than 
that of the empirical matrix (for randomization 3: one- sample 
t(560) = 4, p < 0.001; for randomization 4: one- sample t(1,121) = 3, 
p = 0.001). While, since only one (pair of) ISs was permuted, ran-
domization 3 and 4 only partly altered the maximum loop weight 
(135 of 561 matrices (24%) for randomization 3 and 146 of 1,122 
matrices (13%) for randomization 4). Eighty- one matrices for ran-
domization 3 and 82 matrices for randomization 4 had a higher 
maximum loop weight than the maximum loop weight in the em-
pirical matrix. The highest loop weights for randomization 3 and 4 
were ca. 27 year−1, that is, five times higher than that of the empir-
ical matrix. The other 54 matrices for randomization 3 and 68 ma-
trices for randomization 4 had a lower maximum loop weight than 
that of the empirical matrix, the lowest values being ca. 3 year−1. 
Hence, decreases in maximum loop weight due to randomizations 
3 and 4 were (slightly) less in number and (much) smaller than in-
creases in maximum loop weight. Yet, it was frequently found that 

such swapping of only two (pairs) of ISs had a pronounced effect 
on maximum loop weight, and hence of YRD food web resilience.

3.4 | Example of the pattern of interaction strengths 
in positive feedback omnivorous loops to show how 
randomizations in interaction strengths decrease YRD 
food web resilience

As the loop with the maximum loop weight (PFOL_1, phytoplankton– 
shrimps– zooplankton– phytoplankton) indicates the resilience of the 
YRD food web, we took it as example together with the next heavi-
est loop (PFOL_2, phytoplankton– shrimps– bivalves– phytoplankton) 
to show the effects of the randomizations (Figure 5). In the empiri-
cal matrix, a PFOL includes two strong negative ISs and one weak 
positive IS (Figure 5a), that is, the PFOL_1 comprised the ISs of 0.2, 
−7 and −96 year−1 leading to a weight of 5 year−1 and the PFOL_2 
comprised the ISs of 0.2, −10, and −4 year−1 leading to a weight of 
2 year−1. When we did the randomization 3, that is, swapping the pair 
of ISs between phytoplankton and shrimps with the pair of ISs be-
tween phytoplankton and bivalves, it created a much higher weight: 
the PFOL_1 now comprised the ISs of 29, −7 and −96 year−1 leading 
to a weight of 29 year−1, and the PFOL_2 comprised the ISs of 29, 
−10 and −4 year−1 leading to a weight of 10 year−1, thus both caused 
ca. five times higher loop weights. Likewise, if we only swapped the 
two positive ISs, 0.2 year−1 and 29 year−1, the loop weights of the 
two PFOLs also increased by a factor of ca. 5 (Figure 5c). This shows 
that how the organization of the ISs in the YRD food web makes 
that the strong negative and strong positive ISs are not in the same 

F I G U R E  5   Interaction strengths in two positive feedback omnivorous loops, one loop (P– S– Z– P) is composed of phytoplankton (P), 
zooplankton (Z) and shrimps (S) and the other loop (P– S– B– P) is composed of phytoplankton, bivalves (B) and shrimps in (a) empirical YRD 
Jacobian matrix (the real part of maximum eigenvalue Re(λmax) = 0.2 year−1), (b) randomized matrix based on randomization 3 (swapping the 
pair of ISs between P and S with the pair of ISs between P and B, Re(λmax) = 19 year−1) and (c) randomized matrix based on randomization 4 
(swapping the IS of P on S with the IS of P on B, Re(λmax) = 18 year−1). Negative and positive interaction strengths are represented by red and 
green arrows respectively. The width of arrows is scaled to the absolute values of the interaction strengths. LW means loop weight
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PFOL. This keeps loop weight low and food web resilience high. The 
example in Figure 5 is representative for all PFOLs in the YRD food 
web. By exploring all PFOLs in the YRD food web we found that the 
product of the negative ISs was negatively correlated with the value 
of the positive ISs (Figure 6a). That is, there is no loop where both 
the negative and positive ISs are high which would result in a really 
high loop weight.

To understand the biological mechanisms underlying this neg-
ative correlation between the ISs in PFOLs, we reformulated loop 
weight in terms of the energetic properties of the trophic groups 
in the loop, that is, by taking the two negative ISs as being propor-
tional to the production to biomass ratios of intermediate and top 
groups (Pi/Bi and Pt/Bt respectively) and the positive IS being pro-
portional to the product of the Pt/Bt and the top- bottom biomass 
ratio (Bt/Bb) (cf. Equations 6- 8). We found that the term 3

√
Pt

Bt

Pi

Bi

Pt

Bt

Bt

Bb
 

derived by Equation (9) is highly correlated with the loop weight of 
the PFOLs (Figure 6b). We then checked the relationship between 
the term Pt

Bt
.
Pi

Bi
 (referring to the product of the two negative ISs) and 

the term Pt
Bt
.
Bt

Bb
 (referring to the positive IS), and we found a simi-

lar negative correlation between these two terms as with the ISs 
(Figure 6a,c).

3.5 | Resilience and the weight of the positive 
feedback omnivorous loop in an intraguild 
predation model

To investigate the generality of the observed negative correlations in 
ISs and energetic properties of trophic groups in the YRD food web, 
we ran a dynamical intraguild predation (IGP) model for a large variety 

F I G U R E  6   The 22 positive feedback omnivorous loops (PFOLs) in the empirical food web of the Yellow River Delta wetland (a– c) and 
2000 PFOLs derived from 2000 intraguild predation models (d– f). (a, d) Relationships between the product of the two negative interaction 
strengths (ISn1*ISn2) and the one positive interaction strength (ISp). (b, e) Relationships between the term (Pt/Bt * Pi/Bi * Pt/Bt * Bt/Bb)

^(1/3) 
derived by the energetic reformulation of loop weight (Equation 9) and the exact loop weight. P/B is the ratio of production to biomass. 
Subscripts b, i and t represent the bottom, intermediate and top trophic group in each loop respectively. (c, f) Relationships between the 
term Pt/Bt * Pi/Bi (referring to the product of the two negative ISs) and the term Pt/Bt * Bt/Bb (referring to the positive IS). The colour of each 
circle (i.e. each PFOL in a, c, d, f) reflects the loop weight. The different scales between a, c and d, f are due to the different absolute values 
of biomasses and fluxes between the empirical food web (see Tables S1 and S2) and simulated IGP models (see Figures S7, S8 and S9a)
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of parameter values. From these runs we obtained 2,000 models in 
which the three trophic groups coexisted and exhibited a large varia-
tion in their ISs. Similar as in the YRD food web the product of the two 
negative ISs and the positive IS in the 2,000 PFOLs were negatively 
correlated (Figure 6d). Also consistent with the YRD food web, the 
term 3

√
Pt

Bt

Pi

Bi

Pt

Bt

Bt

Bb
 was closely correlated with the loop weights for the 

2,000 PFOLs (Figure 6e). The terms Pt
Bt
.
Pi

Bi
 and Pt

Bt
.
Bt

Bb
 derived from the 

2,000 PFOLs exhibiting a similar negative correlation (Figure 6f) as 
found for the YRD food web (Figure 6c). Their relationship is more 
scattered than the one in Figure 6d due to the influence of varying 
diet compositions which are not accounted for (Equation 10).

4  | DISCUSSION

Food webs in a variety of ecosystems have been found to maintain 
their stability and resilience via multiple but interrelated mecha-
nisms. Such mechanisms include patterns of interaction strengths 
(ISs) derived from energetic flux pattern (de Ruiter et al., 1995), a 
few strong links embedded in a majority of weak links (McCann 
et al., 1998) and the avoidance of heavy trophic interaction loops 
(Neutel et al., 2007; Neutel & Thorne, 2014). Based on the empirical 
seagrass food web in the YRD wetland, we contribute to these find-
ings by revealing a negative correlation between the negative and 
positive ISs preventing that positive feedback loops become heavy. 
This results in relatively low maximum eigenvalue of the Jacobian 
matrix, indicating a relatively high resilience of the YRD food web. 
Importantly, this study extends our understanding of food web re-
silience by accounting for the energetics at the trophic group and 
food web level, based on our reformulation expressing loop weight 
in terms of specific production rates (production to biomass ratios, 
P/B) and biomass ratios within the loop. We found also a negative 
correlation between the product of the P/B values of intermediate 
and top groups (Pt

Bt
.
Pi

Bi
, referring to the two negative ISs) and the prod-

uct of the P/B value of the top groups and the biomass ratio of the 
top and bottom groups (Pt

Bt
.
Bt

Bb
, referring to the one positive IS) in the 

PFOLs. The intraguild predation modelling underpinned the general-
ity of the results. The set of 2,000 models showed a similar negative 
correlation between the ISs together with the underlying energetic 
properties of component trophic groups.

The distribution of IS values in the YRD food web confirmed ear-
lier findings in that they were skewed towards weak ones, that is, 
exhibiting a few strong interactions embedded within many weak in-
teractions (Emmerson & Raffaelli, 2004; McCann et al., 1998). Some 
other previously studied food webs had a similar log- normal distri-
bution of ISs as the one in YRD (Figure S3; Bascompte et al., 2005; 
Berlow et al., 2009). The ISs in the YRD food web also showed that 
the absolute value of the negative IS was much higher than that of 
the positive IS (Pimm & Lawton, 1977; de Ruiter et al., 1995).

Randomizations 1 and 2 of ISs in the empirical matrix showed 
much higher maximum eigenvalues (Re(λmax)) than the empirical 
matrix, which is in line with previous studies (Jacquet et al., 2016; 
Neutel et al., 2002; Tang et al., 2014; Yodzis, 1981). The linkage 

between the pairing of the negative and positive ISs in the YRD food 
web did not play a substantial role, as the effect of randomization 
2 breaking up this linkage was not greatly different from that of 
randomization 1. Thus, this finding does not confirm that of Tang 
et al. (2014), and we speculate that the ISs parametrized on the basis 
of body size information in Tang et al. (2014) may have captured dif-
ferent properties than the present ones derived from mass- balanced 
fluxes. The two new randomization tests (randomization 3 and 4) 
exchanging only two pairs or two elements in the empirical ma-
trix showed that the permutations of ISs in the heavier loops have 
the most pronounced effect (Figure S4). This finding confirms that 
heavier loops are Achilles heels of food web stability and resilience 
(Mitchell & Neutel, 2012).

The application of the concept of maximum loop weight pro-
vided a way to better understand the biological processes important 
for food web stability and resilience (Neutel et al., 2007; Neutel & 
Thorne, 2014). We found that maximum loop weight in the YRD food 
web originated from the fact that in PFOLs strong negative interac-
tions coincided with a weak positive interaction and vice versa: a 
strong positive IS was combined with weak negative ISs. The mod-
elled energetically feasible IGP food webs confirmed the occurrence 
of this counteracting pattern of ISs and its dampening of loop weight 
(Figure 6c). It is this pattern that constrains the maximum eigenvalue 
Re(λmax) of the Jacobian matrix and promotes food web resilience 
(Figure S5).

The negative correlation between the negative and pos-
itive ISs originated from the energetic properties of the trophic 
groups and mass- balanced constraints. In the ecologically feasible 
IGP models, the fluxes Fbi (from the bottom to the intermediate 
trophic group) and Fit (from the intermediate to the top trophic 
group) (Figure S6) were both negatively correlated with the flux Fbt 
(from the bottom to top trophic group) (Figure S7). This is because 
the production of the bottom trophic group Pb has to be shared 
between the two consumers (Holt & Polis, 1997). Furthermore, 
relatively high values of Fbi and Fit occurred when the biomass of 
the bottom trophic group Bb was close to the half of its carry-
ing capacity (Figure S8), implying that Pb is high. This implies that 
when relatively high values of Fbi and Fit facilitate high negative ISs 
(being Fbi/Bi and Fit/Bt, Equation 3), the positive IS (being eFbt/Bb, 
Equation 4) cannot be relatively high as well given the high value 
of Bb. The IGP modelling also showed a negative correlation be-
tween the two negative ISs (Figure S9b). This is because although 
the fluxes Fbi and Fit are positively correlated, Bi and Bt are nega-
tively correlated due to the competition between the intermediate 
and the top trophic group for Pb (Figure S9a). Bt is high when it 
preys predominately directly on the lowest trophic level reduc-
ing Fbi. Likewise, there is a negative correlation between Pt/Bt and 
Pi/Bi (Figure S10a, Rooney et al., 2008), which influence the two 
negative ISs respectively. Moreover, there is also a negative cor-
relation between Pt/Bt and Bt/Bb limiting the value of the positive 
IS in the loop, as the product of the two values refers to the posi-
tive IS (Figure S10b). Obviously, from a mathematical perspective, 
low values of Bt enhance Pt/Bt but reduce Bt/Bb, and vice versa. 
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Furthermore, from the perspective of energetic feasibility, if the 
top level is metabolically highly active, that is Pt/Bt is high, a sub-
stantial amount of food is required to sustain a certain amount of 
Bt. This imposes an upper limit on Bt given that the overall primary 
production, Pb, is limited. A high value of Pb, in turn, is only feasi-
ble if Bb is sufficiently high, reducing Bt/Bb. Hence, Pt/Bt and Bt/Bb 
cannot be maximized at the same time.

The reformulation of loop weight also revealed why the loop com-
prising phytoplankton, zooplankton and shrimps had the maximum 
loop weight in the YRD food web. This is because zooplankton and 
shrimps have higher P/B values than the other consumers (Table S1), 
leading to high values of the two negative ISs (Rooney et al., 2006). 
In addition, the biomass of phytoplankton is not substantially higher 
than that of shrimps (Table S1), leading to a relatively high biomass 
ratio, and hence a relative strong positive IS. Therefore, in this loop 
the dampening effect of the positive interaction was weak and led 
to the relative high loop weight. Besides, zooplankton only relies 
on phytoplankton production (i.e. fbi = 1 in Equation 10), which also 
contributes to the high weight.

Recent studies have indicated the possible important role of rare 
species, that is, species with a low biomass, in community stability 
(Arnoldi et al., 2019; Säterberg et al., 2019). In particular the study 
(Säterberg et al., 2019) showed that perturbations of rare species 
may have large effects on stability. This result seems congruent 
with our finding in randomizations 3 and 4, since it was indeed the 
permutations of ISs between rare species (i.e. phytoplankton and 
shrimps) and abundant species (i.e. bivalves) that had the greatest 
effect (Figure 5).

Our analyses of omnivorous loops with three trophic groups in 
terms of the new reformulation of loop weight can also be extended 
to longer feedback loops. This is because the ISs among trophic 
groups are inherently a function of P/B and biomass ratios (Equations 
6– 8). Longer feedback loops, for example, loops with four trophic 
groups (see Appendix S2), are subject to similar energetic constraints 
in omnivorous loops and even more mass- balanced constraints due 
to more complex trophic interactions.

Knowledge of patterns and processes underlying resilience of 
food webs is important to understand how species- rich communities 
can withstand environmental disturbance. Our study contributes to 
this understanding by revealing mechanisms underlying resilience of 
an empirical food web. The results show that food web resilience is 
conserved by the organization of interaction strengths in the food 
web, which is determined by energetic properties of the component 
trophic groups and mass- balanced constraints forming the energetic 
build- up of the food web. In particular, the results reveal how ener-
getic constraints at the trophic group and food web level enhance 
food web resilience by dampening the strength of destabilizing pos-
itive feedback loops.
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