
276  |     Functional Ecology. 2022;36:276–293.wileyonlinelibrary.com/journal/fec

Received: 31 August 2021  | Accepted: 3 December 2021

DOI: 10.1111/1365-2435.13986  

C A LOW - G R AC E  R E V I EW

Cellsizeasdriverandsentinelofphytoplanktoncommunity
structureandfunctioning

HelmutHillebrand1,2,3  |EstebanAcevedo-Trejos4  |StefanieD.Moorthi1  |
AlexeyRyabov5,6  |MarenStriebel1  |PatrickK.Thomas1  |Marie-LuiseSchneider1

1Institute for Chemistry and Biology of Marine Environments [ICBM], Plankton Ecology Lab, Carl- von- Ossietzky University Oldenburg, Wilhelmshaven, 
Germany; 2Helmholtz- Institute for Functional Marine Biodiversity at the University of Oldenburg [HIFMB], Oldenburg, Germany; 3Alfred Wegener Institute, 
Helmholtz- Centre for Polar and Marine Research [AWI], Bremerhaven, Germany; 4Earth Surface Process Modelling, Helmholtz Centre Potsdam, GFZ German 
Research Centre for Geosciences, Potsdam, Germany; 5Institute for Chemistry and Biology of Marine Environments [ICBM], Mathematical Modelling, Carl- 
von- Ossietzky University Oldenburg, Oldenburg, Germany and 6Institute of Forest Growth and Computer Science, Technische Universität Dresden, Tharandt, 
Germany

This is an open access article under the terms of the Creat ive Commo ns Attri butio n- NonCo mmerc ial- NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2021 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Correspondence
Helmut Hillebrand
Email: helmut.hillebrand@uni-oldenburg.de

Fundinginformation
Bundesministerium für Bildung und 
Forschung, Grant/Award Number: 
03F0828; Niedersächsisches Ministerium 
für Wissenschaft und Kultur, Grant/
Award Number: ZN3285; Deutsche 
Forschungsgemeinschaft, Grant/Award 
Number: AC 331/1- 1, HI 848/24- 1, HI 
848/26- 1, MO 1931/4- 1 and STR 1383/6- 1

HandlingEditor: Giulia Ghedini 

Abstract
1. Body size is a decisive functional trait in many organisms, especially for phyto-

plankton, which span several orders of magnitude in cell volume. Therefore, the 
analysis of size as a functional trait driving species’ performance has received 
wide attention in aquatic ecology, amended in recent decades by studies docu-
menting changes in phytoplankton size in response to abiotic or biotic factors in 
the environment.

2. We performed a systematic literature review to provide an overarching, partially 
quantitative synthesis of cell size as a driver and sentinel of phytoplankton ecol-
ogy. We found consistent and significant allometric relationships between cell 
sizes and the functional performance of phytoplankton species (cellular rates of 
carbon fixation, respiration and exudation as well as resource affinities, uptake 
and content). Size scaling became weaker, absent or even negative when ad-
dressing C-  or volume- specific rates or growth. C- specific photosynthesis and 
population growth rate peaked at intermediate cell sizes around 100 µm3.

3. Additionally, we found a rich literature on sizes changing in response to warm-
ing, nutrients and pollutants. Whereas small cells tended to dominate under 
oligotrophic and warm conditions, there are a few notable exceptions, which 
indicates that other environmental or biotic constraints alter this general trend. 
Grazing seems a likely explanation, which we reviewed to understand both how 
size affects edibility and how size structure changes in response to grazing. Cell 
size also predisposes the strength and outcome of competitive interactions 
between algal species. Finally, we address size in a community context, where 
size- abundance scaling describes community composition and thereby the bio-
diversity in phytoplankton assemblages.
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1  |  INTRODUCTION

Body size is a decisive element of functional ecology as its im-
plications propagate from basic physiology to the organization 
of ecological communities and ecosystems as well as evolution 
(Gould, 1966; LaBarbera, 1989; Peters, 1983). Allometric scaling 
of basal metabolic rates (Brown et al., 2004; Elgar & Harvey, 1987; 
West et al., 1997) extends to predict population growth or mor-
tality rates (Marba et al., 2007), maximum abundances (Belgrano 
et al., 2002; Damuth, 1981) and home range sizes (McNab, 1963). 
Size is also decisive in structuring interspecific interactions, espe-
cially consumer– resource relationships (Brose et al., 2006; Cohen 
et al., 2003), and community properties such as species diversity 
(Cermeño & Figueiras, 2008; Ryabov et al., 2021).

The role of size is especially pervasive in pelagic ecosys-
tems (Andersen et al., 2016) as pelagic food webs are strongly 
size- structured down to the primary producers (Brooks & 
Dodson, 1965). Whereas the carnivore– prey body size ratio is com-
parable across ecosystem types (Brose et al., 2006), aquatic and 
terrestrial systems differ especially at the herbivore– autotroph 
link (Lindeman, 1942; Shurin et al., 2006; Trebilco et al., 2013). 
Pelagic systems show heterotroph to autotroph biomass ratios 
of 1 (Cebrian et al., 2009), which is much higher than most other 
aquatic and all terrestrial ecosystem types, and reflects that a 
higher proportion of primary production is consumed by herbi-
vores in pelagic systems than in those with ‘macrobial’ autotro-
phs (Cebrian, 1999; Cyr & Pace, 1993). Part of this difference is 
based on the smaller size of microalgae compared to terrestrial 
plants and macroalgae (Shurin et al., 2006), which coincides with 
higher growth rates, higher nutrient content and higher palatabil-
ity (Cebrian et al., 2009).

Assessing phytoplankton size structure therefore is key to un-
derstand pelagic food web organization and flows of energy and 
matter, as these depend on the carbon fixed by phytoplankton. 
At the same time, phytoplankton span an extraordinary range of 
size classes: Largest linear dimensions cover 5 orders of magni-
tude across phytoplankton (Finkel et al., 2010) and volumes more 
than 8 orders of magnitude (Ryabov et al., 2021), which is 100– 
1,000 times the size range of terrestrial mammals or birds (Maurer 
et al., 1992). Consequently, the analysis of size classes has a long 

tradition in phytoplankton ecology, often with cut- offs between 
pico- , nano-  and microplankton based on filter sizes (Legendre & 
Rassoulzadegan, 1996). Analyses of size- fractionated primary pro-
duction and element cycles have been and still are an important tool 
in biological oceanography (Durbin et al., 1975; Larsson & Hagström, 
1982). In more detailed analyses of nutrient uptake, respiration, pho-
tosynthesis and growth, continuous estimates of cell size have been 
used (Agusti et al., 1987; Banse, 1976; Taguchi, 1976). These often 
derive from microscopic measurements and approximations as bio-
volume or cell volume (Hillebrand et al., 1999). Understanding cell 
size as a predictor of functional aspects of pelagic microalgae has 
gained additional momentum in the light of establishing a trait- based 
phytoplankton ecology (Litchman & Klausmeier, 2008; Litchman 
et al., 2007).

In this review, we bring the rich literature on phytoplankton cell 
size together by adopting a systematic literature review process 
(Hillebrand & Gurevitch, 2016; Lortie, 2014) to build a comprehen-
sive basis for our synthesis. We report the steps of this approach ac-
cording to PRISMA (preferred reporting items for systematic review 
and meta- analysis) principles (Moher et al., 2015) to enhance repro-
ducibility of the review. We use this literature basis to assess both 
consequences of cell size and causes of cell size. The former focuses 
on cell size as a driver of phytoplankton performance (primarily at 
the species level) and also addresses the importance of cell size in 
species interactions and community contexts. The latter focuses on 
how cell size responds to environmental factors and therefore can 
act as a sentinel of changing conditions.

This effort stands on the shoulders of previous reviews, start-
ing with Banse's review of how photosynthesis and respiration 
and, consequentially, growth rate of phytoplankton scale to size 
(Banse, 1976). With a similar aim, Sommer et al. (2017) summarized 
the importance of size for phytoplankton population dynamics, es-
pecially growth rate and loss- related processes (sedimentation, graz-
ing). Finkel et al. (2010) added a review on how cell size influences 
elemental composition and stoichiometry of phytoplankton and how 
this might change in a changing ocean. The relationship between 
global warming, temperature and phytoplankton cell size is also at 
the core of a recent freshwater review (Zohary et al., 2021). Perhaps 
most comprising to date is a review that addresses both functional 
and numerical responses of marine phytoplankton species in relation 

4. We conclude that (a) size is a highly predictive trait for phytoplankton metabo-
lism at the cellular scale, with less strong and nonlinear implications for growth 
and specific metabolism and (b) size structure is a highly suitable sentinel of 
phytoplankton responses to changing environments.

K E Y WO RD S
biovolume, growth, meta- analysis, metabolism, nutrients, systematic review, trait- based 
ecology, warming
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to their cell size (Marañón, 2015), but extends towards community 
composition and macroecology.

While these thorough reviews successfully synthesized qualita-
tive and sometimes quantitative information on how cell size relates 
to ecological and physiological processes, they often relate to ma-
rine or freshwater systems or focus on specific processes (growth, 
stoichiometry or response to warming). Here we provide a highly 
comprehensive systematic review and meta- analysis on phytoplank-
ton cell size that incorporates both marine and freshwater data and 
spans levels of organization from cellular processes to communities. 
In a rapidly changing field, we provide quantitative size scaling rules 
across the diversity of phytoplankton taxa for cell size as a driver 
of physiology, connect these findings to species performance and 
interactions along environmental gradients and scan the horizon for 
recently emerging and future research questions. More specifically, 
we aim at understanding how cell size functionally constrains the 
performance of algae in terms of photosynthesis, nutrient uptake 
and growth (Aim 1). Here, we provide a cross- system quantitative 
meta- analysis summarizing the current evidence for the relationship 
between cell size and (a) physiological rates at the cellular level as 
well as (b) specific physiological rates scaled to unit carbon or bio-
volume. Considering cell size as a response, we bring together infor-
mation from previous synthesis and modelling work to address how 
cell size changes with nutrient supply, temperature and dispersion 
(Aim 2). Whereas these two aims mainly address species- level infor-
mation (individual to population), we continue by extending towards 
interspecific and community consequences of size. Here, we first 
ask how cell size relates to two major types of interspecific inter-
actions, grazing and competition (Aim 3). Finally, we discuss cell size 
in a community context, relating size to biodiversity, abundance and 
biomass of phytoplankton (Aim 4). In contrast to Aim 1, where the 
slope between cell size and physiological rates served as consistent 
effect size for a quantitative summary, we refrained from adding a 
quantitative meta- analysis for Aims 2– 4 as the underlying studies 
comprised a plethora of approaches and measured variables that 
were not easily convertible to common effect metrics. We end the 
review with considering future avenues for phytoplankton ecology 
that consider the links between cell size and genetic traits, feed-
backs between the dual role of cell size as driver and response, and 
aspects of intraspecific versus interspecific changes in cell size.

2  |  SYSTEMATICLITERATUREREVIEW
ANDMETA-ANALYSIS

2.1  |  Systematicliteraturereview

We searched ISI Web of Science on 10th February 2021, using a 
search term which in the title required ‘phytoplankton OR algae’ and 
‘cell OR size OR volume’ and in the (more general) topic ‘cell size OR 
cell volume OR size structure’. This combination was chosen as it 
retrieved studies that primarily addressed size issues (hence the ‘size 
or volume’ in the title), but reduced the number of papers to screen 

by the more phytoplankton specific terms in the topic. Thereby, we 
avoided papers dealing with sizes in other organisms (zooplankton, 
fish) or using ‘size’ in the context of experiment size or ecosystem 
size. Our search retrieved 455 studies (see Figure S1), which we 
screened based on title and abstract. Papers not dealing with phyto-
plankton cell size as a functional trait or response were excluded at 
this stage (196 studies). For the remaining 259 we retrieved full- text 
versions, which we could not obtain for nine articles. 132 papers 
were excluded after inspecting the full text, as they described size- 
fractionated biomass or primary production (mainly chlorophyll on 
different filter sizes) or they did not report cell sizes in a functional 
context but presented, for example, methods how cell sizes could 
be calculated.

The remaining 118 papers were categorized by their system (ma-
rine or freshwater), the study type (model, experiment, observation 
or review) and the organizational level (single species, multiple single 
species or communities). Additionally, we categorized the response 
scale as either absolute or specific, the former including processes 
measured at the cellular level and the latter processes per unit car-
bon or biovolume. Finally, the use of cell size as driver (predomi-
nantly Aim 1) or response (most of Aims 2– 4) was noted (Table S1).

A majority of these studies derived from marine systems, whereas 
a few modelling studies did not specify whether marine or fresh-
water phytoplankton was addressed (Figure 1). The study level was 
dominated by community- wide studies, but (multiple) single species 
were addressed in a range of contexts, especially in experiments. 
Observational studies, which were as frequent as experimental, 
were more directed towards communities (Figure 1). These empir-
ical categories dominated the dataset over models or reviews. The 
studies split roughly into equal proportions using cell size as driver 
or response. The former per definition was strongly associated with 
Aim 1 (scaling the physiological and numerical responses to cell size), 
the latter to Aim 2 (cell size in response to the environment). For in-
teractions (Aim 3), cell size occurred as both a driver of edibility and 
competitiveness and as a measure of the response to the presence 
of other species. Aim 4 was addressed with studies that used cell size 
as a component of community composition.

2.2  | Meta-analysis

For the quantitative meta- analyses, we focused on cell size as a 
driver of functional and numerical responses (Aim 1). In all, 22 stud-
ies of the 118 studies provided data in the form of diagrams, which 
we digitized using WebPlotDigitizer (Rohatgi, 2019), or in the form 
of data tables. Between studies, we checked whether data were 
used more than once (i.e. data from one study also used in a differ-
ent review or comparison). Within studies, scatterplots in some 
very data- rich articles were dense and some data points might have 
been masked by overlaying symbols. Therefore, the number of ob-
servations in our analyses can marginally diverge from the actual 
number of observations in the original study. All cell volumes were 
transformed into log10- transformed µm3. Response variables were 



    | 279Functional EcologyHILLEBRAND Et AL.

divided into four categories (C fixation [including photosynthesis, 
respiration and exudation], resource uptake, cellular content and 
growth), the first three categories contained both absolute (per 
cell) and specific (per unit carbon or biovolume) functional re-
sponses. For growth, we obtained growth rates and sedimentation 
rates (in m per day), which we included in this category as it repre-
sents a loss rate. Within categories, we converted response varia-
bles into common units as far as possible and log10- transformed 
these. Only growth rates were not log- transformed as they are de-
fined as exponents with � =

log(N2)− log(N1)

Δt
, where N2 and N1 are 

abundances at two time points and Δt the time difference. Per day, 

for Δt = 1, this is equivalent to � = log
(

N2

N1

)

.

For C fixation, studies reported C- fixation as rate per cell or 
per unit cell carbon, carbon affinity as fixation per unit light or 
available CO2, and critical demand as minimum irradiance for zero 
net photosynthesis and CO2 half- saturation constant. The loss of 
carbon was measured as respiration rate (O2 respiration rate per 
cell, respired J per day per cell or respired C per fixed C), whereas 
exudation was given as C release rate per cell or as the fraction of 
C released per C fixed. For resource uptake, we obtained nitrogen 
uptake rates per cell and per available N as well as N or P affinity 
(N or P uptake per unit available N or P). For elemental content, 
we analysed cellular content of C, N, P and chlorophyll as abso-
lute responses as well as N storage (ratio of maximal to minimal N 
quota), N:C molar ratio and chlorophyll per biovolume as specific 
responses.

We regressed the response variables (log- transformed rate) 
against the log- transformed cell size separately for each dataset as 
well as response category and scale, using

We used the slope b as effect size for the meta- analysis and 
the standard error of the slope as its sampling variance. First, we 

obtained grand mean effect sizes (i.e. weighted mean slope per 
response category and scale), and their 95% confidence inter-
vals (CIs) from a random effects meta- analysis. If the latter did 
not include zero, we identified these grand mean effect sizes as 
being significantly positive or negative. We also analysed whether 
the grand mean effects differed from 1, which would indicate 
an isometric relationship between size and response (Marañón, 
2015). Second, we calculated phylum- specific slopes by splitting 
each case (as above) further by phylum, if the number of obser-
vations per phylum was >3 and the log- transformed size differ-
ence >1 order of magnitude. Four different phyla fulfilled these 
criteria in the data (Bacillariophyta, Chlorophyta, Dinophyta and 
Haptophyta). If studies did not report the phylogenetic identity 
of a result, we lumped these into the category ‘other’. From these 
slopes, we obtained phylum- specific mean effect sizes and their 
CIs for each response category and scale. Third, we also tested 
for significant differences between systems (freshwater, marine, 
both) by splitting each case by system, but no significant differ-
ences were observed and we defer these results to the supporting 
material (Figure S2).

3  |  CELLSIZEASADRIVEROF
FUNCTIONALANDNUMERICAL
RESPONSES(AIM1)

3.1  |  Carbonfixation

All aspects of absolute (per cell) carbon metabolism scaled allometri-
cally to cell size, including fixation (photosynthesis) and respiration 
rates as well as organic carbon exudation and C- affinity (Figures 2a 
and 3a– d). The consistent scaling of C acquisition processes with size 
(grand mean slope = 0.77, 95% CI 0.60– 0.93) was congruently <1 
across different studies involving different taxa. Size dependence 
was similar for the rate of carbon fixation and the rate of carbon 

log(rate) = a + b × log(size).

FIGURE1 Alluvial plot summarizing 
the outcome of the systematic review and 
describing the database for this review. 
The number of studies are given based on 
system (F = freshwater, FM = freshwater and 
marine, M = marine, none = none), level of 
organization (C = community, MS = multiple 
individually cultured species, SS = single 
species), type of study (M = model, 
E = experiment, O = observation, R = review, 
double letters indicating the respective 
combination) and whether cell size has been 
assessed as a driver (D) or response (R). 
Colour code corresponds to the four aims of 
this review, cell size as driver of functional 
and numerical responses (Aim 1) and as 
sentinel to the environment (Aim 2), grazing 
(Aim 3) and compositional constraint (Aim 4)
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loss (respiration and exudation rates). The same relationship is po-
tentially true within species, as Malerba et al. (2021) experimentally 
evolved a nearly 10- fold size difference in the marine green algae 
Dunaiella tertiolecta, finding size scaling for CO2 affinity, external 
carbonic anhydrase, and maximum carbon fixation (all positive) and 
half- saturation constants (negative).

Some previous evidence suggested isometric scaling exponents 
for phytoplankton metabolic rates including organic carbon exuda-
tion (Huete- Ortega et al., 2012, 2014; López- Sandoval et al., 2013, 
2014; Marañón et al., 2007), whereas others suggested allometric 
relationships between cell size and photosynthesis, respiration and 
net- energy flux of a cell (Finkel et al., 2004; Malerba et al., 2017). 
The combined empirical evidence strongly suggests allometric, non- 
isometric scaling to be norm that seems to be consistent across algal 
phyla as indicated by their largely overlapping confidence intervals 
(Figure 2b).

In contrast to the results on absolute rates, specific rates for C- 
metabolism were weakly or nonlinearly related to cell size, resulting 
in a grand mean effect size not different from zero across and within 
phyla (Figures 2 and 3e– i). The compensation light intensity, the light 
level at which respiration balances photosynthesis, showed no signif-
icant relationship with cell size in our analysis (Figure 3e), indicating 
that other factors than size determine the minimum light intensity 
required for positive net production in phytoplankton. Malerba 
et al. (2017) attributed this size independency to the fact that larger 
cells produce more energy but also have higher energy costs due 
to respiration. Specific losses (fraction of C being exuded and C- 
specific respiration) were largely independent of cell size as well 
(Figure 3f,h) (López- Sandoval et al., 2013). Only C- specific C- fixation 
showed a consistent peak at intermediate sizes around 100 µm3 
(Figure 3g), leading to the lowest respiration to photosynthesis ratio 
at this size (Figure 3i). Such a unimodal relationship between specific 

F IGURE 2 Results of meta- analysis 
on cell- size- driven response variables. 
For each response category and scale, 
the mean slope and its 95% confidence 
interval are represented. (a) Overall meta- 
analysis. (b) Meta- analysis with separate 
slopes per phylum, ‘other’ categorizing 
results that were not assigned to a 
specific phylum in the original study. 
Open symbols denote absolute variables 
(i.e. measured per cell), closed symbols 
specific variables scaled to per unit C or 
biovolume
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C- fixation and cell size has been previously reported (Marañón, 2015 
and references therein) and indicates stronger growth constraints 
on small and large cells compared with intermediate- sized cells (see 
‘Growth’).

At the same time, the literature review generated evidence that 
environmental conditions strongly influence the relationship be-
tween size and specific physiology. Large- sized phytoplankton cells 
exhibited higher C- specific photosynthetic rates at high irradiance 
and nutrient conditions in coastal surface waters than smaller cells; 
however, these differences vanished under light limitation (Cermeño 
et al., 2005a, 2005b). The size scaling exponent decreased also under 
nutrient- depleted conditions (Marañón et al., 2007). These effects 
were attributed to the enhanced package effect in larger cells under 
light limitation (intracellular self- shading, Finkel et al., 2004; Mei 
et al., 2009) and the downregulation of metabolic processes under 
resource limitation, respectively. However, not all studies found dif-
ferent size scaling exponents for photosynthesis with nutrient and 
light availability (Malerba et al., 2017).

3.2  | Nutrientuptake

When molecular diffusion limits nutrient acquisition, theory predicts 
that smaller cells should have an advantage in the acquisition rate 

relative to the required amount of nutrients for growth (Pasciak & 
Gavis, 1974; Yoshiyama & Klausmeier, 2008). Larger cells tend to 
have greater maximum uptake rates on a per- cell basis (Edwards 
et al., 2011, 2012; Litchman et al., 2007) and may have larger nu-
trient storage capacity relative to minimum nutrient requirements 
(Grover, 1991; Litchman et al., 2009; Stolte & Riegman, 1995). These 
predictions were well reflected in our quantitative analyses across 
a range of studies (Friebele et al., 1978; Marañón et al., 2013; Zaoli 
et al., 2019) as absolute (per cell) nutrient uptake rate scaled with 
size, whereas specific uptake rates did not (Figures 2 and 4). For 
the latter, the grand mean effect size was not significantly different 
from zero (mean = −0.15, 95% CI −0.52 to 0.22), which reflected 
differences between N- specific N uptake (Figure 4a) and biovolume- 
specific P uptake (Figure 4e). Only for P, specific uptake rates tended 
to clearly decline with cell size, which indicated that small cells take 
up phosphorus faster per cell volume (Friebele et al., 1978).

The grand mean effect size (mean slope = 0.44, 95% CI = 0.23– 
0.65) for absolute resource uptake was positive, but significantly <1 
and smaller than for C- fixation. The latter mainly reflects that despite 
strong size scaling for absolute nutrient uptake rates (Figure 4b,f) 
we observed positive but weaker relationships between cell size 
and the half- saturation constant for N (Figure 4c) and P (Figure 4g) 
or the affinity for N (Figure 4d). Still, as predicted by theory (Smith 
et al., 2014), half- saturation constants increase with size.

F IGURE 3 Digitized data on cell size as a driver of variables related to carbon fixation. Open symbols denote absolute variables (i.e. 
measured per cell, panels a– d), closed symbols specific variables scaled to per unit C or biovolume (panels e– i). ( a) cellular carbon fixation 
rate [pgC hr−1], (b) cellular respiration rate [olive symbols: pg O2 hr−1 ; green: J day−1], (c) carbon exudation rate [pgC hr−1], (d) light- specific 
carbon affinity [green symbols: pg C µmol quanta−1 m−2, purple: pg C W−1 m−2]. (e) compensation irradiance [µmol quanta m−2 s−1]. (f) fraction 
of carbon fixed released through exudation [%] (g) carbon- specific carbon fixation rate [pgC pgC−1 hr−1], (h) carbon- specific respiration 
rate [pgC pgC−1 hr−1], (i) ratio respiration to photosynthesis rates [dimensionless]. Response variables are log- transformed. Colour codes 
for study identity according to Table S1 and the data repository. Solid lines indicate significant regressions (p < 0.05), dashed lines non- 
significant relationships at the case level
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3.3  |  Carbon,nutrientandchlorophyllcontent

Absolute cellular contents (cell carbon, nitrogen and phosphorus as 
well as chlorophyll) increased allometrically with cell size (Figure 2a, 
grand mean effect size = 0.81, 95% CI 0.71– 0.91). Slopes were simi-
larly strong for C, N and P content (Figure 5a– c) as well as cellu-
lar chlorophyll content (Figure 5d). As slopes were significantly <1, 
smaller cells have lower C, N and P content per cell, but higher con-
tent per volume. This fact has been considered important early on 
(Mullin et al., 1966) as size (biovolume derived from microscopic anal-
yses) is transferred into carbon (for mass balances and biogeochemi-
cal models) based on such allometric relationships (Menden- Deuer 
& Lessard, 2000; Montagnes et al., 1994). Whereas Menden- Deuer 
and Lessard (2000) found clearly different slopes of this relationship 
between phyla, we found that the scaling of absolute nutrient con-
tent with size was consistent across all taxonomic groups (Figure 2b). 
Likewise, Montagnes et al. (1994) pointed out that there was vari-
ance in the relationships between C, N and cell volume; however, 
the variation did not appear to be taxa related. The N:C ratio did not 

substantially change with cell size in the data we obtained (Figure 5f) 
as had been described previously (Montagnes et al., 1994). But it 
should be noted that others proposed that C:N ratios increased with 
cell size (Marañón et al., 2013; Taguchi, 1976), arguing that small cells 
contain higher relative abundance of nitrogen- containing molecules, 
such as nucleic acids and membrane proteins, while they possess a 
reduced storage of carbon- rich compounds such as lipids and carbo-
hydrates. As for bulk carbon, the volatile and semi- volatile carbon 
content also allometrically scaled to cell size (Bonsang et al., 2010; 
Ruiz- Halpern et al., 2014).

Although some studies point at rather isometric relationships for 
chlorophyll content (Marañón et al., 2007; Montagnes et al., 1994), 
which would mean that C:chlorophyll ratios are independent of cell 
size (Taguchi, 1976), the sampled data rather suggest an allometric 
relationship (Figure 5d) with lower specific chlorophyll content in 
larger cells (Figure 5g; Agustí, 1991; Key et al., 2010). Pigment ra-
tios can be size dependent as well, reflecting that different scaling 
slopes exist for different pigments, for example, photo- protective 
versus photosynthetically active pigments (Fujiki & Taguchi, 2002; 

F IGURE 4 Digitized data on cell size as a driver of variables related to nutrient uptake. Open symbols denote absolute variables (i.e. 
measured per cell, panels b– d, f– g), closed symbols specific variables scaled to per unit N or P (panels a, e). (a) nitrogen- specific nitrogen 
uptake [pgN pgN−1 hr−1], (b) cellular nitrogen uptake [pg N hr−1], (c) half saturation constant for nitrogen [µM], (d) nitrogen affinity [pg cell- 1]. 
(e) specific phosphorus uptake [pgP µm−3 hr−1]. (f) cellular phosphorus uptake [pg P hr−1] (g) half saturation constant for phosphorus [µM]. 
Response variables are log- transformed. Colour codes for study identity according to Table S1 and the data repository. Solid lines indicate 
significant regressions (p < 0.05), dashed lines non- significant relationships at the case level



    | 283Functional EcologyHILLEBRAND Et AL.

Key et al., 2010). It is important to note that Chl a content and total 
cellular pigment content in phytoplankton are highly light dependent 
and decrease sharply with increasing irradiance at low light but more 
gradually at higher irradiances (Key et al., 2010).

3.4  | Growth

While absolute metabolic rates consistently scale allometrically to cell 
size, growth and sedimentation rates did not (Figure 2). Growth rates 
showed a peak at intermediate sizes around a cell size of 100 µm3 and 
lower growth rates at small and large extremes of the size spectrum 
(Figure 5h). This unimodal relationship between size and growth rate, 
when including all size classes, explains why the overall effect size in our 
meta- analysis (Figure 2) did not differ from zero. Previous experimental 

work suggested a negative and monotonic relationship between cell 
size and maximum growth rates in phytoplankton, especially when fo-
cused mainly on nano-  and microphytoplankton (Banse, 1976; Finkel 
et al., 2010; Sommer, 1989; Sunda & Huntsman, 1997). This led to a 
general assumption that growth rates decrease with greater cell size, 
as would be expected from power law scaling predictions of meta-
bolic theory (e.g. Mei et al., 2011). However, recent theoretical (Ward 
et al., 2017; Wirtz, 2013) and empirical (Chen & Liu, 2010; Marañón 
et al., 2013; Sal et al., 2015) evidence suggests that picophytoplank-
ton have reduced maximum growth rates compared with taxa of more 
intermediate size, such that an unimodal size- growth pattern emerges 
across all taxa. Only Montagnes et al. (1994) indicated that picophyto-
plankton growth rate does not increase with size.

The potential mechanisms for a unimodal relationship have 
been discussed previously (Marañón, 2015; Sommer et al., 2017) 

F IGURE 5 Digitized data on cell size as a driver of variables related to cellular composition and growth. Open symbols denote absolute 
variables (i.e. measured per cell, a– d, h– i), closed symbols specific variables scaled to per unit C, N or biovolume (e– g). (a) cellular carbon 
content, (b) cellular nitrogen content, (c) cellular phosphorus content, (d) cellular chlorophyll a content [units for a– d: pg cell−1]. (e) N storage 
as ratio of maximal to minimal cell quota [dimensionless]. (f) molar N:C ratio. (g) chlorophyll content per biovolume [pg µm−3], (h) growth rate 
[day−1], (i) sedimentation rate [m day−1]. Colour codes for study identity according to Table S1 and the data repository. Solid lines indicate 
significant regressions (p < 0.05), dashed lines non- significant relationships at the case level. Please note that growth rate (panel h) has not 
been log- transformed
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and are effectively an integration of all size- based cellular func-
tions, including nutrient uptake rates (Vmax), nutrient content 
(Qmin and Qmax) and light absorption (as discussed above), as well 
as intracellular transport distances. Briefly, for small cells (<c. 
100 µm3), growth rates are reduced due to limited nutrient uptake 
rates relative to minimum requirements (i.e. low Vmax:Qmin ratios) 
and a relatively high proportion of ‘non- scalable components’ like 
membranes and nucleic acids, which limit space for the biosyn-
thetic machinery needed for rapid growth (Raven, 1998). Larger 
cells, on the other hand, face limited assimilation due to greater 
distances within cells. These size- mediated growth patterns can 
then have cascading influences on community and ecosystem 
properties from size- abundance- spectra to primary productivity 
and responses to environmental change.

On the loss side (see ‘Dispersion’ under Aim 2 and ‘Grazing’ 
under Aim 3), sedimentation rates are typically assumed to increase 
with size (Kiørboe, 1993; Pančić & Kiørboe, 2018), especially when 
also leading to larger aggregate formation (Bach et al., 2016). The 
data we have at hand (Stolte et al., 1994) tested for effects of nitro-
gen nutrition on size- specific sedimentation rates and did not find 
different sedimentation rates with cell size (Figure 5i).

4  |  CELLSIZEASASENTINELOF
ENVIRONMENTALCHANGE(AIM2)

4.1  | Nutrients

Varying nutrient conditions can influence phytoplankton cell sizes 
ranging from the individual to the community scale. Physiological 
adaptation of single species to nutrient conditions has been well 
documented, although the direction and magnitude of size change 
varies by taxa and the nutrient in question (Peter & Sommer, 2013, 
2015; Yan et al., 2021). Peter and Sommer (2013, 2015) found that 
nutrient limitation uniformly decreases the cell volume of all spe-
cies studied (as well as the community mean), and that N limita-
tion causes stronger decreases in cell size relative to P limitation. 
By contrast, Yan et al. (2021) showed diverging cell shape and size 
responses as Microcystis aeruginosa decreased in volume while 
Scenedesmus obliquus increased when the severity of nutrient stress 
increased over time.

In addition to these physiological responses at the individ-
ual/population level, community assembly processes determine 
the relative abundance of species that differ in size and exhibit 
highly divergent growth responses to nutrient levels. Much work 
has focused in particular on how the size abundance spectrum 
(SAS) of whole communities is affected by variation in nutrient 
levels, especially in the context of eutrophic versus oligotrophic 
systems (Huete- Ortega et al., 2014; Lin et al., 2020; Montes- 
Pérez et al., 2020; Pomati et al., 2020; Pulina et al., 2019; Roselli 
& Basset, 2015). In this respect, nearly all studies find that a clear 
signature of eutrophic systems is a flatter SAS slope than for oli-
gotrophic systems (i.e., indicating relatively higher abundances 

of large cells in eutrophic vs. oligotrophic systems). These re-
sults are also supported by trait- based models that utilize empir-
ical scaling relationships of metabolic parameters with cell size 
(Irwin et al., 2006; Kriest & Oschlies, 2007). This signature is clear 
enough that an assessment of size spectral slopes can then be 
used as predictive index to diagnose nutrient pollution and other 
anthropogenic impacts (Vadrucci et al., 2013). However, the total 
algal biomass cannot be inferred from the slope of the SAS rela-
tionship (Moreno- Ostos et al., 2015).

Nutrient- mediated effects rarely act alone to influence cell size. 
Complex interactivity among nutrients, temperature and grazing is 
common (Pomati et al., 2020), suggesting it may not be reasonable to 
expect a single dominating factor to drive observed size distributions 
in a given system. Peter and Sommer (2013, 2015) found consistent 
temperature- nutrient interactions by which temperature effects be-
come much stronger with greater nutrient stress. Size spectra also 
exhibit interactive dependence upon nutrients and temperature, al-
though the relative importance of each individual effect and their 
interactions varies substantially with system characteristics (Pomati 
et al., 2020).

As for macronutrients, the higher surface area:volume ratio of 
small cells leads to a higher uptake of micronutrients and also pol-
lutants. Studies found higher accumulation of heavy metals such as 
methylmercury (Kim et al., 2014), whereas larger species tolerated 
higher concentrations of heavy metals (Echeveste et al., 2012) or 
organic substances such as polycyclic aromatic hydrocarbons (Ben 
Othman et al., 2012; Echeveste et al., 2010). Still, effects on size 
distributions may be subtle or absent, depending on toxicant (Baho 
et al., 2019; Biggs et al., 1978, 1979; Ting et al., 1991; Törnqvist & 
Claesson, 1987).

4.2  | Warming

Warming effects on cell size often occur in concert with other 
constraints such as nutrients (see above) or grazing (see below). 
For marine (Finkel et al., 2010) as well as freshwater phytoplank-
ton (Zohary et al., 2021), previous reviews have concluded that 
with increasing temperature, cell size declines both within spe-
cies (average cell size per species) and in communities (small spe-
cies favoured over large species). These size reductions could 
be observed in warming experiments (Klauschies et al., 2012; 
Peter & Sommer, 2012; Yvon- Durocher et al., 2011) and observa-
tional studies (Abonyi et al., 2020; Chen & Liu, 2010; Hillebrand 
et al., 2022). The same relationship appears over geological time- 
scales, with declining temperatures over the Cenozoic coincid-
ing with increasing cell size in dinoflagellates and diatoms (Finkel 
et al., 2007). Smaller cells under higher temperatures seem to be 
a general finding that meets model predictions (Chen et al., 2020) 
and macroecological patterns (Acevedo- Trejos et al., 2013, 2018). 
However, these patterns are not ubiquitous: Using the slope of 
biomass per size class distributions from multiple observations, 
Pomati et al. (2020) found small sizes to be favoured under low 
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temperature high nutrient conditions, contrasting the expected 
pattern. Likewise, 10 years of experimental warming also shifted 
size spectra towards larger species in a long- term mesocosm ex-
periment (Padfield et al., 2018). Even if small size coincides with 
higher temperature in space or time, other correlated factors (nu-
trients, grazing) may cause the pattern (Marañón et al., 2012).

4.3  | Dispersion

The dynamics in a fluid depend on the so- called Reynolds number, 
which shows the relationship between inertial forces proportional 
to the cell mass and viscous forces proportional to the cell area 
(Purcell, 1977). The relative contributions of inertial and gravitational 
forces increase with cell size, which can lead to a size- dependent 
sinking rate (see above). Portalier et al. (2016) showed that large cells 
compared to small cells require a higher minimum turbulence level 
for survival. In addition, the maximum critical depth to survive ex-
ists for large cells at both low and high turbulence levels, whereas 
for small cells, due to their greater buoyancy, this depth is limited 
only at high turbulence level. As turbulence affects nutrient flow, we 
expect changes in size composition based on the vertical and hori-
zontal water column hydrodynamics, as is reflected by flatter SAS in 
upwelling areas and steeper SAS in downwelling areas (Rodríguez 
et al., 2001).

These observations scale up from subregional to regional and 
global levels. For example, phytoplankton cell size distribution at 
spatial scales <10 km is influenced by the local circulation of water 
masses (Font- Muñoz et al., 2017; Waga et al., 2019), where gyres con-
tain smaller cells towards their inner part and larger cells are displaced 
out of the gyres. By contrast, homogeneous cell size spatial patterns 
prevail when there are no gyres (Font- Muñoz et al., 2017). Such pat-
terns can be modified by light, nutrient availability or temperature 
as detailed above such that phytoplankton community size structure 
at large scales can be predicted from hydrodynamics, nutrient con-
centrations and temperature (Acevedo- Trejos et al., 2015). Basin ob-
servations across the Atlantic Ocean corroborate the conclusions of 
Chen and Liu (2010) and others earlier (Cermeño et al., 2006) that the 
effects of these environmental conditions on the size composition of 
phytoplankton can be scaled to the global scale.

5  |  CELLSIZEINSPECIESINTERACTIONS
(AIM3)

5.1  |  Competition

Based on the above described advantage in the acquisition rate relative 
to the required amount of nutrients for growth (Pasciak & Gavis, 1974; 
Yoshiyama & Klausmeier, 2008), small cells should have a competitive 
advantage for limiting nutrients. Edwards et al. (2011) predicted that 
these competitive abilities are correlated for phosphate and nitrate 
and smaller cells should be superior at acquiring both resources. By 

contrast, larger cells should be more competitive under heterogene-
ous conditions as maximum cell quota increases faster with size than 
the minimum quota (Kerimoglu et al., 2012) and large cells thus have 
larger nutrient storage capacity relative to minimum nutrient require-
ments (Grover, 1991; Litchman et al., 2009; Stolte & Riegman, 1995). 
Large cell size has in fact been shown to be advantageous under fluc-
tuating nitrate supply, as larger species had highest specific uptake 
rates (Edwards et al., 2011; Litchman et al., 2007; Stolte et al., 1994) 
and sustained uptake for longer time (Suttle et al., 1987). However, this 
advantage ceases if instead of uptake and storage the conversion from 
internal pools into biomass is the rate limiting step (Verdy et al., 2009). 
Moreover, differences in ammonium and nitrate transport rates can 
lead to high growth rates of small algae in ammonium- controlled sys-
tems, whereas large algae dominate under fluctuating nitrate supply 
due to a larger specific volume of vacuoles in which nitrate could be 
stored (Stolte & Riegman, 1995).

As phytoplankton growth depends on nutrient uptake as well 
as photosynthesis, the interplay between light and nutrients in 
natural environments further influences the competition outcome 
between small and large cells. Increasing cell sizes were found with 
increasing light intensities (Thompson et al., 1991). Small cells suffer 
less from self- shading, have less scattering of light, higher light ab-
sorption and faster nutrient transport affinities (Agustí et al., 1994; 
Chisholm, 1992). Therefore, a shift towards smaller cells in a warmer 
(see below), more stratified and less nutrient- rich ocean is expected 
(Finkel et al., 2005, 2007).

Given the size- specific competitive abilities, one should also ex-
pect that size differences constrain the strength of competition as 
well, but we found only one study addressing this. In an experimen-
tal study with differentially sized cyanobacteria, Gallego et al. (2019) 
found that increased size differences reduced competition as both 
niche and fitness differences increased; however, size differences 
were not sufficient to predict species coexistence.

5.2  | Grazing

As we did not find studies on size- specific parasitism and viral loads, 
the top- down section of species interactions focuses entirely on 
grazing. The size selectivity of many zooplankton grazers is well 
known to affect the size structure of phytoplankton communities 
(Bergquist et al., 1985; Tackx & Daro, 1993). Thus, phytoplankton 
size is used as a proxy for how palatable these organisms are to their 
grazers, where smaller cells are considered more edible than larger 
cells (Riegman et al., 1993), and constant predator– prey ratios in 
planktonic communities are generally suggested (but they are not 
the rule, see Sommer et al., 2017). To describe this interaction a sim-
ple growth– defence trade- off between the higher competitive abil-
ity to acquire nutrients by smaller cells and the lower vulnerability 
of larger cells is commonly suggested (Cottingham, 1999; Marañón, 
2015; Sunda & Hardison, 2010) and implemented in theoretical 
models (Acevedo- Trejos et al., 2015; Cloern, 2018; Jiang et al., 2005; 
Wirtz, 2013). An alternative modification to this classical trade- off 
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relates phytoplankton nutrient quality with grazer selectivity towards 
high- quality food, where smaller undefended cells are assumed to 
have a richer nutritional value (Branco et al., 2020). However, the 
detectability and selectivity of food value by zooplankton grazers 
have been questioned and cell size is just one of many other relevant 
traits or strategies that phytoplankton can use to alter their palat-
ability to grazers (see Pančić & Kiørboe, 2018 for a recent review on 
phytoplankton defence mechanisms).

A shift from smaller and less diverse communities to larger and 
more diverse communities is predicted via a size- selective grazing 
and nutrient acquisition mechanism (Acevedo- Trejos et al., 2015, 
2018). Other observations at different scales seem to support this 
trade- off mechanism to explain the size composition of planktonic 
communities (Cloern, 2018; Irigoien et al., 2005). These observa-
tions suggest that large phytoplankton cells dominate under high 
nutrient conditions by exploiting a lag response of the predators. 
However, based on the studies described above (Aim 1), phytoplank-
ton physiology provides another feasible explanation for the domi-
nance of large- sized phytoplankton in resource- rich environments. 
In addition, natural community assemblage experiments testing the 
combined effects of grazing and temperature on the size structure 
of phytoplankton communities suggest that the presence of grazers 
can modify the response to warming but does not reverse its ef-
fect by, for example, shifting the phytoplankton community towards 
larger sizes (Klauschies et al., 2012; Peter & Sommer, 2012, 2013).

6  |  CELLSIZEINACOMMUNITY
CONTEXT(AIM4)

Phytoplankton cell size is a decisive aspect of community compo-
sition, reflecting the importance of size as driver of functional and 

numerical responses (Aim 1), sentinel of the physical and chemical 
properties of the environment (Aim 2) and important trait in species 
interactions (Aim 3). The frequent use of species abundance scaling 
(see above) as well as community- weighted means and variances of 
cell sizes reflect this central role of size, which makes the diversity 
of morphological traits such as cell size and shape an integral part of 
phytoplankton diversity. Early observations by Semina et al. (1976) 
along the South African coast showed that even as the species com-
position varied, similar mean cell sizes and shapes (‘Lebensformen’) 
were observed under similar environmental conditions. A linear 
relationship between logarithm of cell size and taxonomic richness 
indicated high species richness for small sizes in the open ocean 
(Cermeño & Figueiras, 2008) and Aegean Sea (Ignatiades, 2017). 
But the same study showed that bell- shaped relationships between 
cell size and taxonomic richness can occur in coastal environments 
(Cermeño & Figueiras, 2008). Similar dominance of intermediately 
sized species was also found in Lake Kinneret (Kamenir et al., 2006). 
Support for these patterns comes from a recent compilation of phy-
toplankton morphological traits (surface area, aspect ratio, elon-
gation and volume) and taxonomic diversity data across various 
coastal marine environments, which showed a unimodal relation-
ship between species richness and cell size in coastal environments 
(Figure 6, Ryabov et al., 2021). The highest species diversity coin-
cided with a high variability of cell shapes, both occurring at inter-
mediate cell sizes (102– 104 μm3), whereas both richness and shape 
diversity declined as cell volumes became smaller or larger because 
of spherical shapes dominating at both ends (Figure 6).

These emergent patterns imply fundamental physiological, eco-
logical and evolutionary constraints to the size– shape relationships. 
Selection of certain shapes and sizes might be driven by fundamen-
tal physical laws that determine rates of energy– mass exchange and 
physical interaction between cells and environment (Naselli- Flores 

F IGURE 6 Geometry and diversity of unicellular phytoplankton. (a) Surface extension (compares a cell's surface to that of a sphere of 
equal volume) and (b) diversity (characterized as the number of genera) per volume bin. The colour coding indicates different shape classes: 
compact with aspect ratio equal to 1, prolate with aspect ratio >1 and oblate with aspect ratio <1. Based on data from Ryabov et al. (2021)
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et al., 2021; Niklas & Hammond, 2019), because the rates of these 
processes depend significantly on cell size and shape. For example, 
the rate of resource diffusion to the cell surface (Fick's law) depends 
on the cell shape and surface area, and the water drag force against a 
moving object depends on the object's projected sail area. Thus, the 
scaling of the metabolic rates depends directly on cell size and shape, 
but the details of these dependencies and their impact on phyto-
plankton diversity and abundance so far remain largely unexplored.

Consequently, size distribution modelling is an important task 
in predicting global ecosystem response and satellite- based phy-
toplankton stock assessment (Laiolo et al., 2021; Montes- Hugo 
et al., 2008; Waga et al., 2019). The size distribution of biomass is 
roughly described by the so- called Sheldon spectrum, a roughly 
uniform distribution of biomass density as a function of logarithmic 
body mass (Gaedke, 1992; Sheldon et al., 1972), although the ob-
served distribution may depart from it to a large extent when large 
or small cells dominate. Trait- based modelling approaches typically 
use empirical dependencies of metabolic parameters of nutrient and 
light uptake as well as sinking and grazing on phytoplankton size 
(Portalier et al., 2016; Ward et al., 2014). Zero and one- dimensional 
mechanistic models with bottom- up control help to understand the 
influence of natural conditions on the dominance of size classes. 
However, one of the main problems with this approach is the low 
biodiversity and competitive exclusion of most species. Aggregated 
or adaptive dynamic models (Acevedo- Trejos et al., 2015; Chen 
et al., 2020; Jiang et al., 2005; Wirtz, 2013) allow capturing mean 
size and size variance by focusing on the adaptive capacity of phy-
toplankton communities as a whole. However, this approach omits 
adaptive processes at the individual/population level and requires an 
external mechanism to sustain diversity. These models often predict 
lower size variability than observed in nature.

Another approach to reconstructing the phytoplankton size 
spectrum includes losses, which can result either from background 
mortality or from grazing. With increasing cell size, trophic function 
changes smoothly from small autotrophic species through interme-
diate mixotrophic to large heterotrophic species. The formation of 
the phytoplankton size spectrum apparently cannot be considered 
in isolation from top- down control as large organisms grow not only 
from inorganic resources, but also by feeding on smaller organisms, 
with some of them being both prey and predators (Guiet et al., 2016; 
Sprules & Barth, 2015). While most spectral models explain the 
biomass distribution of multicellular organisms, Cuesta et al. (2018) 
presented a model explaining the biomass spectrum of unicellular 
phytoplankton. The stable solution of this model gives a power law 
of the Sheldon biomass distribution, but requires incorporating al-
lometric scaling of metabolic parameters of nutrient consumption, 
explicit consideration of cell size growth and cell division, and a non-
linear dependence of predation rate on prey density.

Perhaps the most promising approach is global ecosystem mod-
els that explicitly account for spatial environmental heterogeneities 
and differences in the scaling of metabolic rates of different phylo-
genetic groups and zooplankton grazing pressure (Ward et al., 2014). 
Developing such an approach, Dutkiewicz et al. (2020) showed an 

increase in cell size diversity with increasing rate of limiting nutrient 
supply, and a decrease in phytoplankton biodiversity with decreas-
ing predator biodiversity. Summarizing a set of computer experi-
ments, they conclude that phytoplankton diversity, and hence size 
spectrum, is a complex function of four major driving forces: rate 
of supply of limiting resource, imbalance in resource ratios relative 
to the competitor requirements, size- dependent grazing control and 
transport processes.

7  |  CONCLUSIONSAND
RECOMMENDATIONSFORFUTURE
RESEARCH

We conducted a systematic literature review on phytoplankton 
size as a driver and sentinel of its performance. Following the 
protocol enhanced the breadth of the literature basis for this re-
view and brought aspects to our attention that often sail in the 
shadow of a few highly cited papers. Based on this database, we 
can conclude that size pervades levels of organization and spatial– 
temporal scales as a predictive trait for phytoplankton. Cellular 
uptake of resources, elemental content, photosynthesis and C- 
loss all monotonically and allometrically scale with size (Aim 1). 
However, specific C- fixation and the respiration:photosynthesis 
ratio are unimodally related to size, which coincides with fastest 
growing species being found at intermediate size around 100 µm3. 
Given these strong functional dependencies, changes in the en-
vironment (nutrients, temperature, physical processes) as well as 
biotic interactions leave clear imprints on the phytoplankton size 
structure (Aims 2 and 3). Selection for smaller sized phytoplankton 
under warm, nutrient- poor and more stratified conditions seems 
to prevail, whereas top- down effects of grazers on phytoplank-
ton size depend on feeding type and resource conditions. Most 
importantly, the different impacts are strongly interactive, as tem-
perature, light, nutrients, and grazer presence and compensation 
affect phytoplankton simultaneously. Therefore, size is ultimately 
linked to phytoplankton diversity and biogeography, which makes 
it a central item of models on the role of phytoplankton from local 
ecosystems to the global ocean (Aim 4). In addition to these over-
arching conclusions, our systematic review also obtained a range 
of knowledge gaps and needed next steps. While we cannot pro-
vide a fully exhaustive horizon scan, we focus here on three major 
aspects.

7.1  | Genetictraits(Aims1and4)

Much of the size- related phytoplankton literature deals with mor-
phological and physiological consequences and causes of size differ-
ences. Much less is known about the relationship between cell size 
and molecular traits. Genome size generally increases with cell size 
in eukaryotes (Gregory, 2005), which has also been demonstrated 
for numerous phytoplankton taxa, including chlorophytes (Malerba 
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et al., 2020; Smith et al., 2013), diatoms (Connolly et al., 2008) and 
chrysophytes (Olefeld et al., 2018). The positive relationship be-
tween cell size and genome size in eukaryotes has been suggested 
to be the product of conflicting evolutionary pressures, on the one 
hand, to minimize redundant DNA and maximize performance, but 
on the other hand to maintain a minimum level of essential func-
tion (Malerba et al., 2020). For prokaryotes, no significant correla-
tion between cell size and genome size was found in bacteria and 
archaea (Westoby et al., 2021), but some evidence exists that it does 
for cyanobacteria. Analysing 58 cyanobacteria genomes, Larsson 
et al. (2011) demonstrated that strains with a genome size of >3.3 
Mbp were more variable in terms of cell size and included all filamen-
tous taxa, while all genomes <3.3 Mbp in size represented unicellular 
taxa. However, to our knowledge, there has still been no systematic 
analysis on the relationship between genome size and cell size in cy-
anobacteria. Smith et al. (2013) also found plastid DNA to scale with 
cell size and complexity in chlorophytes, yet, other studies provided 
mixed evidence for this pattern and emphasized a lack of plastid ge-
nome data for many major algal groups (Smith, 2017). Filling in this 
information by cross-  and within- species surveys would be a first 
step towards understanding the genome- size relationship, but to 
bring this information into algal biogeography and trait- based global 
models requires also the understanding of its ecological and evo-
lutionary constraints (see table 1 in Green et al., 2008, which also 
lists genetic traits other than genome size). For example, Olefeld 
et al. (2018) demonstrated for chrysophytes that genome size may 
differ depending on the nutritional mode of a species, with photo-
trophs having larger cell volumes and genomes than heterotrophic 
strains, while intermediate- sized mixotrophs exhibited smaller ge-
nomes than expected based on cell size. The authors attributed this 
finding to the evolutionary reduction of the energetically costly pho-
tosynthetic apparatus in phototrophs to the reduced apparatus in 
mixotrophs and a further reduction in pure heterotrophs.

7.2  |  Feedbacksandinteractions(Aims1,2and3)

Most data we obtained by our survey consisted of bivariate rela-
tionships using cell size either as driver or response in correlation 
to another variable. Consequently, the effect sizes obtained for 
the meta- analysis were slopes of such bivariate relationships. Such 
bivariate approaches tend to ignore feedbacks, though, which are 
likely to occur in nature (see Aim 2 for example of low nutrient avail-
ability selecting for smaller cells, but smaller cells reducing nutrient 
concentrations more by their higher affinity). Such feedbacks and 
the already shown strong interdependency of cell size responses 
to nutrients, light, temperature, hydrodynamics and grazing call for 
different statistical analyses that allow disentangling these aspects. 
Structural equation models come to mind as they allow quantifying 
reciprocal relationships where cell size can be a cause and a conse-
quence of observed patterns at the same time (see Grace et al., 2016 
for an example of how SEM can provide insights regarding 

biodiversity effects). Thereby, the field can move to acknowledge 
the multivariate nature of cell size as a driver and a response and 
to assess the relative role of top- down and bottom- up forces under 
different conditions.

7.3  |  Intraspecificvariance(Aims1and4)

Whereas the amount of cell- size- related information on different 
species is massive, intraspecific plasticity in cell size and variance 
in size- scaling has rarely been addressed except for some specific 
size- selection experiments (Malerba et al., 2021). However, in-
traspecific changes in mean size were major in a long- term phyto-
plankton monitoring programme (Hillebrand et al., 2022). Additional 
flexibility arises from colony formation, where size and number of 
cells per colony may vary. Intraspecific trait variation has become a 
cornerstone of trait- based approaches (Bolnick et al., 2011), but has 
only recently been assessed more systematically for phytoplankton 
(Fontana et al., 2018). Here we recommend assessing not only the 
magnitude of this plasticity, but also its importance for competitive 
(Gallego et al., 2019) and trophic interactions (as size links to trophic 
strategy, see Andersen et al., 2016; Chakraborty et al., 2017).
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